Theory
For example, if one note has a frequency of 440 Hz, the note an octave above it is at 880 Hz, and the note an octave below is at 220 Hz. The ratio of frequencies of two notes an octave apart is therefore 2:1. Further octaves of a note occur at 2n times the frequency of that note (where n is an integer), such as 2, 4, 8, 16, etc. and the reciprocal of that series. For example, 55 Hz and 440 Hz are one and two octaves away from 110 Hz because they are 0.5 (or 2 −1) and 4 (or 22) times the frequency, respectively.
After the unison, the octave is the simplest interval in music. The human ear tends to hear both notes as being essentially "the same", due to closely related harmonics. Notes in an octave "ring" together, adding a pleasing sound to music. For this reason, notes an octave apart are given the same note name in the Western system of music notation—the name of a note an octave above A is also A. This is called octave equivalency, the assumption that pitches one or more octaves apart are musically equivalent in many ways, leading to the convention "that scales are uniquely defined by specifying the intervals within an octave". The conceptualization of pitch as having two dimensions, pitch height (absolute frequency) and pitch class (relative position within the octave), inherently include octave circularity. Thus all C♯s, or all 1s (if C = 0), in any octave are part of the same pitch class.
Octave equivalency is a part of most "advanced musical cultures", but is far from universal in "primitive" and early music. The languages in which the oldest extant written documents on tuning are written, Sumerian and Akkadian, have no known word for "octave". However, it is believed that a set of cuneiform tablets that collectively describe the tuning of a nine-stringed instrument, believed to be a Babylonian lyre, describe tunings for seven of the strings, with indications to tune the remaining two strings an octave from two of the seven tuned strings. Leon Crickmore recently proposed that "The octave may not have been thought of as a unit in its own right, but rather by analogy like the first day of a new seven-day week".
Monkeys experience octave equivalency, and its biological basis apparently is an octave mapping of neurons in the auditory thalamus of the mammalian brain and the perception of octave equivalency in self-organizing neural networks can form through exposure to pitched notes, without any tutoring, this being derived from the acoustical structure of those notes. Studies have also shown the perception of octave equivalence in rats (Blackwell & Schlosberg, 1943), human infants (Demany & Armand, 1984), and musicians (Allen, 1967) but not starlings (Cynx, 1993), 4-9 year old children (Sergeant, 1983), or nonmusicians (Allen, 1967).
While octaves commonly refer to the perfect octave (P8), the interval of an octave in music theory encompasses chromatic alterations within the pitch class, meaning that G♮ to G♯ (13 semitones higher) is an Augmented octave (A8), and G♮ to G♭ (11 semitones higher) is a diminished octave (d8). The use of such intervals is rare, as there is frequently a more preferable enharmonic notation available, but these categories of octaves must be acknowledged in any full understanding of the role and meaning of octaves more generally in music.
Read more about this topic: First Octave
Famous quotes containing the word theory:
“It makes no sense to say what the objects of a theory are,
beyond saying how to interpret or reinterpret that theory in another.”
—Willard Van Orman Quine (b. 1908)
“Could Shakespeare give a theory of Shakespeare?”
—Ralph Waldo Emerson (18031882)
“The theory [before the twentieth century] ... was that all the jobs in the world belonged by right to men, and that only men were by nature entitled to wages. If a woman earned money, outside domestic service, it was because some misfortune had deprived her of masculine protection.”
—Rheta Childe Dorr (18661948)