Transformation of A Surface and Volume Element
To transform quantities that are defined with respect to areas in a deformed configuration to those relative to areas in a reference configuration, and vice versa, we use Nanson's relation, expressed as
where is an area of a region in the deformed configuration, is the same area in the reference configuration, and is the outward normal to the area element in the current configuration while is the outward normal in the reference configuration, is the deformation gradient, and .
The corresponding formula for the transformation of the volume element is
-
Derivation of Nanson's relation To see how this formula is derived, we start with the oriented area elements in the reference and current configurations:
The reference and current volumes of an element are
where .
Therefore,
or,
so,
So we get
or,
Read more about this topic: Finite Strain Theory
Famous quotes containing the words transformation of, surface, volume and/or element:
“Whoever undertakes to create soon finds himself engaged in creating himself. Self-transformation and the transformation of others have constituted the radical interest of our century, whether in painting, psychiatry, or political action.”
—Harold Rosenberg (19061978)
“In the cold of Europe, under prudish northern fogs, except when slaughter is afoot, you only glimpse the crawling cruelty of your fellow men. But their rottenness rises to the surface as soon as they are tickled by the hideous fevers of the tropics.”
—Louis-Ferdinand Céline (18941961)
“To be thoroughly conversant with a Mans heart, is to take our final lesson in the iron-clasped volume of despair.”
—Edgar Allan Poe (18091845)
“To get a man soundly saved it is not enough to put on him a pair of new breeches, to give him regular work, or even to give him a University education. These things are all outside a man, and if the inside remains unchanged you have wasted your labour. You must in some way or other graft upon the mans nature a new nature, which has in it the element of the Divine.”
—William Booth (18291912)