Weak Factorization Systems
Suppose e and m are two morphisms in a category C. Then e has the left lifting property with respect to m (resp. m has the right lifting property with respect to e) when for every pair of morphisms u and v such that ve=mu there is a morphism w such that the following diagram commutes. The difference with orthogonality is that w is not necessarily unique.
A weak factorization system (E, M) for a category C consists of two classes of morphisms E and M of C such that :
- The class E is exactly the class of morphisms having the left lifting property wrt the morphisms of M.
- The class M is exactly the class of morphisms having the right lifting property wrt the morphisms of E.
- Every morphism f of C can be factored as for some morphisms and .
Read more about this topic: Factorization System
Famous quotes containing the words weak and/or systems:
“Mothers who are strong people, who can pursue a life of their own when it is time to let their children go, empower their children of either gender to feel free and whole. But weak women, women who feel and act like victims of something or other, may make their children feel responsible for taking care of them, and they can carry their children down with them.”
—Frank Pittman (20th century)
“I am beginning to suspect all elaborate and special systems of education. They seem to me to be built up on the supposition that every child is a kind of idiot who must be taught to think.”
—Anne Sullivan (18661936)