Factorization System - Weak Factorization Systems

Weak Factorization Systems

Suppose e and m are two morphisms in a category C. Then e has the left lifting property with respect to m (resp. m has the right lifting property with respect to e) when for every pair of morphisms u and v such that ve=mu there is a morphism w such that the following diagram commutes. The difference with orthogonality is that w is not necessarily unique.

A weak factorization system (E, M) for a category C consists of two classes of morphisms E and M of C such that :

  1. The class E is exactly the class of morphisms having the left lifting property wrt the morphisms of M.
  2. The class M is exactly the class of morphisms having the right lifting property wrt the morphisms of E.
  3. Every morphism f of C can be factored as for some morphisms and .

Read more about this topic:  Factorization System

Famous quotes containing the words weak and/or systems:

    She’s in the house.
    She’s at turn after turn.
    She’s behind me.
    She’s in front of me.
    She’s in my bed.
    She’s on path after path,
    and I’m weak from want of her.
    O heart,
    there is no reality for me
    other than she she
    she she she she
    in the whole of the reeling world.
    And philosophers talk about Oneness.
    Amaru (c. seventh century A.D.)

    People stress the violence. That’s the smallest part of it. Football is brutal only from a distance. In the middle of it there’s a calm, a tranquility. The players accept pain. There’s a sense of order even at the end of a running play with bodies stewn everywhere. When the systems interlock, there’s a satisfaction to the game that can’t be duplicated. There’s a harmony.
    Don Delillo (b. 1926)