Factorization System

A factorization system (E, M) for a category C consists of two classes of morphisms E and M of C such that:

  1. E and M both contain all isomorphisms of C and are closed under composition.
  2. Every morphism f of C can be factored as for some morphisms and .
  3. The factorization is functorial: if and are two morphisms such that for some morphisms and, then there exists a unique morphism making the following diagram commute:

Read more about Factorization System:  Orthogonality, Equivalent Definition, Weak Factorization Systems

Famous quotes containing the word system:

    Columbus stood in his age as the pioneer of progress and enlightenment. The system of universal education is in our age the most prominent and salutary feature of the spirit of enlightenment, and it is peculiarly appropriate that the schools be made by the people the center of the day’s demonstration. Let the national flag float over every schoolhouse in the country and the exercises be such as shall impress upon our youth the patriotic duties of American citizenship.
    Benjamin Harrison (1833–1901)