Ext Functor - Ring Structure and Module Structure On Specific Exts

Ring Structure and Module Structure On Specific Exts

One more very useful way to view the Ext functor is this: when an element of Extn
R(A, B) = 0 is considered as an equivalence class of maps f: PnB for a projective resolution P* of A ; so, then we can pick a long exact sequence Q* ending with B and lift the map f using the projectivity of the modules Pm to a chain map f*: P*Q* of degree -n. It turns out that homotopy classes of such chain maps correspond precisely to the equivalence classes in the definition of Ext above.

Under sufficiently nice circumstances, such as when the ring R is a group ring over a field k, or an augmented k-algebra, we can impose a ring structure on Ext*
R(k, k). The multiplication has quite a few equivalent interpretations, corresponding to different interpretations of the elements of Ext*
R(k, k).

One interpretation is in terms of these homotopy classes of chain maps. Then the product of two elements is represented by the composition of the corresponding representatives. We can choose a single resolution of k, and do all the calculations inside HomR(P*,P*), which is a differential graded algebra, with cohomology precisely ExtR(k,k).

The Ext groups can also be interpreted in terms of exact sequences; this has the advantage that it does not rely on the existence of projective or injective modules. Then we take the viewpoint above that an element of Extn
R(A, B) is a class, under a certain equivalence relation, of exact sequences of length n + 2 starting with B and ending with A. This can then be spliced with an element in Extm
R(C, A), by replacing ... → X1A → 0 and 0 → AYn → ... with:

where the middle arrow is the composition of the functions X1A and AYn. This product is called the Yoneda splice.

These viewpoints turn out to be equivalent whenever both make sense.

Using similar interpretations, we find that Ext*
R(k, M) is a module over Ext*
R(k, k), again for sufficiently nice situations.

Read more about this topic:  Ext Functor

Famous quotes containing the words ring, structure and/or specific:

    He will not idly dance at his work who has wood to cut and cord before nightfall in the short days of winter; but every stroke will be husbanded, and ring soberly through the wood; and so will the strokes of that scholar’s pen, which at evening record the story of the day, ring soberly, yet cheerily, on the ear of the reader, long after the echoes of his axe have died away.
    Henry David Thoreau (1817–1862)

    Agnosticism is a perfectly respectable and tenable philosophical position; it is not dogmatic and makes no pronouncements about the ultimate truths of the universe. It remains open to evidence and persuasion; lacking faith, it nevertheless does not deride faith. Atheism, on the other hand, is as unyielding and dogmatic about religious belief as true believers are about heathens. It tries to use reason to demolish a structure that is not built upon reason.
    Sydney J. Harris (1917–1986)

    Patriotism is proud of a country’s virtues and eager to correct its deficiencies; it also acknowledges the legitimate patriotism of other countries, with their own specific virtues. The pride of nationalism, however, trumpets its country’s virtues and denies its deficiencies, while it is contemptuous toward the virtues of other countries. It wants to be, and proclaims itself to be, “the greatest,” but greatness is not required of a country; only goodness is.
    Sydney J. Harris (1917–1986)