Ring Structure and Module Structure On Specific Exts
One more very useful way to view the Ext functor is this: when an element of Extn
R(A, B) = 0 is considered as an equivalence class of maps f: Pn → B for a projective resolution P* of A ; so, then we can pick a long exact sequence Q* ending with B and lift the map f using the projectivity of the modules Pm to a chain map f*: P* → Q* of degree -n. It turns out that homotopy classes of such chain maps correspond precisely to the equivalence classes in the definition of Ext above.
Under sufficiently nice circumstances, such as when the ring R is a group ring over a field k, or an augmented k-algebra, we can impose a ring structure on Ext*
R(k, k). The multiplication has quite a few equivalent interpretations, corresponding to different interpretations of the elements of Ext*
R(k, k).
One interpretation is in terms of these homotopy classes of chain maps. Then the product of two elements is represented by the composition of the corresponding representatives. We can choose a single resolution of k, and do all the calculations inside HomR(P*,P*), which is a differential graded algebra, with cohomology precisely ExtR(k,k).
The Ext groups can also be interpreted in terms of exact sequences; this has the advantage that it does not rely on the existence of projective or injective modules. Then we take the viewpoint above that an element of Extn
R(A, B) is a class, under a certain equivalence relation, of exact sequences of length n + 2 starting with B and ending with A. This can then be spliced with an element in Extm
R(C, A), by replacing ... → X1 → A → 0 and 0 → A → Yn → ... with:
where the middle arrow is the composition of the functions X1 → A and A → Yn. This product is called the Yoneda splice.
These viewpoints turn out to be equivalent whenever both make sense.
Using similar interpretations, we find that Ext*
R(k, M) is a module over Ext*
R(k, k), again for sufficiently nice situations.
Read more about this topic: Ext Functor
Famous quotes containing the words ring, structure and/or specific:
“He will not idly dance at his work who has wood to cut and cord before nightfall in the short days of winter; but every stroke will be husbanded, and ring soberly through the wood; and so will the strokes of that scholars pen, which at evening record the story of the day, ring soberly, yet cheerily, on the ear of the reader, long after the echoes of his axe have died away.”
—Henry David Thoreau (18171862)
“Communism is a proposition to structure the world more reasonably, a proposition for changing the world. As such, we have to analyze it and, if we deem it reasonable, act upon it.”
—Friedrich Dürrenmatt (19211990)
“The permanence of all books is fixed by no effort friendly or hostile, but by their own specific gravity, or the intrinsic importance of their contents to the constant mind of man.”
—Ralph Waldo Emerson (18031882)