Yao's Method
Yao's method is orthogonal to the 2k-ary method where the exponent is expanded in radix b=2k and the computation is as performed in the algorithm above. Let "n", "ni", "b", and "bi" be integers.
Let the exponent "n" be written as
- where for all
Let xi = xbi. Then the algorithm uses the equality
Given the element 'x' of G, and the exponent 'n' written in the above form, along with the pre computed values xb0....xbl-1 the element xn is calculated using the algorithm below
- y=1,u=1 and j=h-1
- while j > 0 do
- for i=0 to l-1 do
- if ni=j then u=u*xbi
- y=y*u
- j=j-1
- return y
If we set h=2k and bi = hi then the ni 's are simply the digits of n in base h. Yao's method collects in u first those xi which appear to the highest power h-1; in the next round those with power h-2 are collected in u as well etc. The variable y is multiplied h-1 times with the initial u, h-2 times with the next highest powers etc. The algorithm uses l+h-2 multiplications and l+1 elements must be stored to compute xn (see ).
Read more about this topic: Exponentiation By Squaring
Famous quotes containing the word method:
“Argument is conclusive ... but ... it does not remove doubt, so that the mind may rest in the sure knowledge of the truth, unless it finds it by the method of experiment.... For if any man who never saw fire proved by satisfactory arguments that fire burns ... his hearers mind would never be satisfied, nor would he avoid the fire until he put his hand in it ... that he might learn by experiment what argument taught.”
—Roger Bacon (c. 12141294)