Introduction
The unit n-sphere, Sn, is the set of all n+1-tuples (x1, x2, ... xn+1) of real numbers, such that the sum x12 + x22 + ... + xn+12 = 1. (S1 is a circle; S2 is the surface of an ordinary ball of radius one in 3 dimensions.) Topologists consider a space, X, to be an n-sphere if every point in X can be assigned to exactly one point in the unit n-sphere in a continuous way, which means that sufficiently nearby points in X get assigned to nearby points in Sn and vice-versa. For example a point x on an n-sphere of radius r can be matched with a point on the unit n-sphere by adjusting its distance from the origin by 1/r.
In differential topology, a more stringent condition is added, that the functions matching points in X with points in Sn should be smooth, that is they should have derivatives of all orders everywhere. To calculate derivatives, one needs to have local coordinate systems defined consistently in X. Mathematicians were surprised in 1956 when John Milnor showed that consistent coordinate systems could be set up on the 7-sphere in two different ways that were equivalent in the continuous sense, but not in the differentiable sense. Milnor and others set about trying to discover how many such exotic spheres could exist in each dimension and to understand how they relate to each other. No exotic structures are possible on the 1-, 2-, 3-, 5-, 6- or 12-spheres. Some higher dimensional spheres have only two possible differentiable structures, others have thousands. Whether exotic 4-spheres exist, and if so how many, is an important unsolved problem in mathematics.
Read more about this topic: Exotic Sphere
Famous quotes containing the word introduction:
“My objection to Liberalism is thisthat it is the introduction into the practical business of life of the highest kindnamely, politicsof philosophical ideas instead of political principles.”
—Benjamin Disraeli (18041881)
“Do you suppose I could buy back my introduction to you?”
—S.J. Perelman, U.S. screenwriter, Arthur Sheekman, Will Johnstone, and Norman Z. McLeod. Groucho Marx, Monkey Business, a wisecrack made to his fellow stowaway Chico Marx (1931)
“The role of the stepmother is the most difficult of all, because you cant ever just be. Youre constantly being testedby the children, the neighbors, your husband, the relatives, old friends who knew the childrens parents in their first marriage, and by yourself.”
—Anonymous Stepparent. Making It as a Stepparent, by Claire Berman, introduction (1980, repr. 1986)