Exact Differential - Some Useful Equations Derived From Exact Differentials in Two Dimensions

Some Useful Equations Derived From Exact Differentials in Two Dimensions

(See also Bridgman's thermodynamic equations for the use of exact differentials in the theory of thermodynamic equations)

Suppose we have five state functions, and . Suppose that the state space is two dimensional and any of the five quantities are exact differentials. Then by the chain rule

(1)~~~~~ dz = \left(\frac{\partial z}{\partial x}\right)_y dx+ \left(\frac{\partial z}{\partial y}\right)_x dy = \left(\frac{\partial z}{\partial u}\right)_v du +\left(\frac{\partial z}{\partial v}\right)_u dv

but also by the chain rule:

(2)~~~~~ dx = \left(\frac{\partial x}{\partial u}\right)_v du +\left(\frac{\partial x}{\partial v}\right)_u dv

and

(3)~~~~~ dy= \left(\frac{\partial y}{\partial u}\right)_v du +\left(\frac{\partial y}{\partial v}\right)_u dv

so that:

(4)~~~~~ dz = \left[ \left(\frac{\partial z}{\partial x}\right)_y \left(\frac{\partial x}{\partial u}\right)_v + \left(\frac{\partial z}{\partial y}\right)_x \left(\frac{\partial y}{\partial u}\right)_v \right]du

+ \left[ \left(\frac{\partial z}{\partial x}\right)_y \left(\frac{\partial x}{\partial v}\right)_u + \left(\frac{\partial z}{\partial y}\right)_x \left(\frac{\partial y}{\partial v}\right)_u \right]dv

which implies that:

(5)~~~~~ \left(\frac{\partial z}{\partial u}\right)_v = \left(\frac{\partial z}{\partial x}\right)_y \left(\frac{\partial x}{\partial u}\right)_v + \left(\frac{\partial z}{\partial y}\right)_x \left(\frac{\partial y}{\partial u}\right)_v

Letting gives:

(6)~~~~~ \left(\frac{\partial z}{\partial u}\right)_y = \left(\frac{\partial z}{\partial x}\right)_y \left(\frac{\partial x}{\partial u}\right)_y

Letting gives:

(7)~~~~~ \left(\frac{\partial z}{\partial y}\right)_v = \left(\frac{\partial z}{\partial y}\right)_x + \left(\frac{\partial z}{\partial x}\right)_y \left(\frac{\partial x}{\partial y}\right)_v

Letting, gives:

(8)~~~~~ \left(\frac{\partial z}{\partial y}\right)_x = - \left(\frac{\partial z}{\partial x}\right)_y \left(\frac{\partial x}{\partial y}\right)_z

using (\partial a/\partial b)_c = 1/(\partial
b/\partial a)_c gives the triple product rule:

(9)~~~~~ \left(\frac{\partial z}{\partial x}\right)_y \left(\frac{\partial x}{\partial y}\right)_z \left(\frac{\partial y}{\partial z}\right)_x =-1

Read more about this topic:  Exact Differential

Famous quotes containing the words derived, exact and/or dimensions:

    In the case of our main stock of well-worn predicates, I submit that the judgment of projectibility has derived from the habitual projection, rather than the habitual projection from the judgment of projectibility. The reason why only the right predicates happen so luckily to have become well entrenched is just that the well entrenched predicates have thereby become the right ones.
    Nelson Goodman (b. 1906)

    The exact objectives of Islam Inc. are obscure. Needless to say everyone involved has a different angle, and they all intend to cross each other up somewhere along the line.
    William Burroughs (b. 1914)

    The truth is that a Pigmy and a Patagonian, a Mouse and a Mammoth, derive their dimensions from the same nutritive juices.... [A]ll the manna of heaven would never raise the Mouse to the bulk of the Mammoth.
    Thomas Jefferson (1743–1826)