Exact Differential - Some Useful Equations Derived From Exact Differentials in Two Dimensions

Some Useful Equations Derived From Exact Differentials in Two Dimensions

(See also Bridgman's thermodynamic equations for the use of exact differentials in the theory of thermodynamic equations)

Suppose we have five state functions, and . Suppose that the state space is two dimensional and any of the five quantities are exact differentials. Then by the chain rule

(1)~~~~~ dz = \left(\frac{\partial z}{\partial x}\right)_y dx+ \left(\frac{\partial z}{\partial y}\right)_x dy = \left(\frac{\partial z}{\partial u}\right)_v du +\left(\frac{\partial z}{\partial v}\right)_u dv

but also by the chain rule:

(2)~~~~~ dx = \left(\frac{\partial x}{\partial u}\right)_v du +\left(\frac{\partial x}{\partial v}\right)_u dv

and

(3)~~~~~ dy= \left(\frac{\partial y}{\partial u}\right)_v du +\left(\frac{\partial y}{\partial v}\right)_u dv

so that:

(4)~~~~~ dz = \left[ \left(\frac{\partial z}{\partial x}\right)_y \left(\frac{\partial x}{\partial u}\right)_v + \left(\frac{\partial z}{\partial y}\right)_x \left(\frac{\partial y}{\partial u}\right)_v \right]du

+ \left[ \left(\frac{\partial z}{\partial x}\right)_y \left(\frac{\partial x}{\partial v}\right)_u + \left(\frac{\partial z}{\partial y}\right)_x \left(\frac{\partial y}{\partial v}\right)_u \right]dv

which implies that:

(5)~~~~~ \left(\frac{\partial z}{\partial u}\right)_v = \left(\frac{\partial z}{\partial x}\right)_y \left(\frac{\partial x}{\partial u}\right)_v + \left(\frac{\partial z}{\partial y}\right)_x \left(\frac{\partial y}{\partial u}\right)_v

Letting gives:

(6)~~~~~ \left(\frac{\partial z}{\partial u}\right)_y = \left(\frac{\partial z}{\partial x}\right)_y \left(\frac{\partial x}{\partial u}\right)_y

Letting gives:

(7)~~~~~ \left(\frac{\partial z}{\partial y}\right)_v = \left(\frac{\partial z}{\partial y}\right)_x + \left(\frac{\partial z}{\partial x}\right)_y \left(\frac{\partial x}{\partial y}\right)_v

Letting, gives:

(8)~~~~~ \left(\frac{\partial z}{\partial y}\right)_x = - \left(\frac{\partial z}{\partial x}\right)_y \left(\frac{\partial x}{\partial y}\right)_z

using (\partial a/\partial b)_c = 1/(\partial
b/\partial a)_c gives the triple product rule:

(9)~~~~~ \left(\frac{\partial z}{\partial x}\right)_y \left(\frac{\partial x}{\partial y}\right)_z \left(\frac{\partial y}{\partial z}\right)_x =-1

Read more about this topic:  Exact Differential

Famous quotes containing the words derived, exact and/or dimensions:

    These are our grievances which we have thus laid before his majesty with that freedom of language and sentiment which becomes a free people, claiming their rights as derived from the laws of nature, and not as the gift of their chief magistrate.
    Thomas Jefferson (1743–1826)

    If we define a sign as an exact reference, it must include symbol because a symbol is an exact reference too. The difference seems to be that a sign is an exact reference to something definite and a symbol an exact reference to something indefinite.
    William York Tindall (1903–1981)

    Why is it that many contemporary male thinkers, especially men of color, repudiate the imperialist legacy of Columbus but affirm dimensions of that legacy by their refusal to repudiate patriarchy?
    bell hooks (b. c. 1955)