Exact Differential
In multivariate calculus, a differential is said to be exact, as contrasted with an inexact differential, if it is of the form dQ, for some differentiable function Q.
Read more about Exact Differential: Partial Differential Relations, Some Useful Equations Derived From Exact Differentials in Two Dimensions
Famous quotes containing the words exact and/or differential:
“If we define a sign as an exact reference, it must include symbol because a symbol is an exact reference too. The difference seems to be that a sign is an exact reference to something definite and a symbol an exact reference to something indefinite.”
—William York Tindall (19031981)
“But how is one to make a scientist understand that there is something unalterably deranged about differential calculus, quantum theory, or the obscene and so inanely liturgical ordeals of the precession of the equinoxes.”
—Antonin Artaud (18961948)