Exact Differential
In multivariate calculus, a differential is said to be exact, as contrasted with an inexact differential, if it is of the form dQ, for some differentiable function Q.
Read more about Exact Differential: Partial Differential Relations, Some Useful Equations Derived From Exact Differentials in Two Dimensions
Famous quotes containing the words exact and/or differential:
“He who asks fortune-tellers the future unwittingly forfeits an inner intimation of coming events that is a thousand times more exact than anything they may say. He is impelled by inertia, rather than curiosity, and nothing is more unlike the submissive apathy with which he hears his fate revealed than the alert dexterity with which the man of courage lays hands on the future.”
—Walter Benjamin (18921940)
“But how is one to make a scientist understand that there is something unalterably deranged about differential calculus, quantum theory, or the obscene and so inanely liturgical ordeals of the precession of the equinoxes.”
—Antonin Artaud (18961948)