Total Internal Reflection of Light
For example, consider total internal reflection in two dimensions, with the interface between the media lying on the x axis, the normal along y, and the polarization along z. One might naively expect that for angles leading to total internal reflection, the solution would consist of an incident wave and a reflected wave, with no transmitted wave at all, but there is no such solution that obeys Maxwell's equations. Maxwell's equations in a dielectric medium impose a boundary condition of continuity for the components of the fields E||, H||, Dy, and By. For the polarization considered in this example, the conditions on E|| and By are satisfied if the reflected wave has the same amplitude as the incident one, because these components of the incident and reflected waves superimpose destructively. Their Hx components, however, superimpose constructively, so there can be no solution without a non-vanishing transmitted wave. The transmitted wave cannot, however, be a sinusoidal wave, since it would then transport energy away from the boundary, but since the incident and reflected waves have equal energy, this would violate conservation of energy. We therefore conclude that the transmitted wave must be a non-vanishing solution to Maxwell's equations that is not a traveling wave, and the only such solutions in a dielectric are those that decay exponentially: evanescent waves.
Mathematically, evanescent waves can be characterized by a wave vector where one or more of the vector's components has an imaginary value. Because the vector has imaginary components, it may have a magnitude that is less than its real components. If the angle of incidence exceeds the critical angle, then the wave vector of the transmitted wave has the form
which represents an evanescent wave because the y component is imaginary. (Here α and β are real and i represents the imaginary unit.)
For example, if the polarization is perpendicular to the plane of incidence, then the electric field of any of the waves (incident, reflected, or transmitted) can be expressed as
where is the unit vector in the z direction.
Substituting the evanescent form of the wave vector k (as given above), we find for the transmitted wave:
where α is the attenuation constant and β is the propagation constant.
Read more about this topic: Evanescent Wave
Famous quotes containing the words total, internal, reflection and/or light:
“The totality of our so-called knowledge or beliefs, from the most casual matters of geography and history to the profoundest laws of atomic physics or even of pure mathematics and logic, is a man-made fabric which impinges on experience only along the edges. Or, to change the figure, total science is like a field of force whose boundary conditions are experience.”
—Willard Van Orman Quine (b. 1908)
“Ones stomach is ones internal environment.”
—Samuel Butler (18351902)
“With respect to a true culture and manhood, we are essentially provincial still, not metropolitan,mere Jonathans. We are provincial, because we do not find at home our standards; because we do not worship truth, but the reflection of truth; because we are warped and narrowed by an exclusive devotion to trade and commerce and manufacturers and agriculture and the like, which are but means, and not the end.”
—Henry David Thoreau (18171862)
“Come hither, and I shall light a candle of understanding in thine heart, which shall not be put out.”
—Apocrypha. 2 Esdras, 14:25.