Essential Supremum and Essential Infimum - Examples

Examples

On the real line consider the Lebesgue measure and its corresponding σ-algebra Σ. Define a function f by the formula

 f(x)= \begin{cases} 5, & \text{if } x=1 \\ -4, & \text{if } x = -1 \\ 2, & \text{ otherwise. } \end{cases}

The supremum of this function (largest value) is 5, and the infimum (smallest value) is −4. However, the function takes these values only on the sets {1} and {−1} respectively, which are of measure zero. Everywhere else, the function takes the value 2. Thus, the essential supremum and the essential infimum of this function are both 2.

As another example, consider the function

 f(x)= \begin{cases} x^3, & \text{if } x\in \mathbb Q \\ \arctan{x} ,& \text{if } x\in \mathbb R\backslash \mathbb Q \\ \end{cases}

where Q denotes the rational numbers. This function is unbounded both from above and from below, so its supremum and infimum are ∞ and −∞ respectively. However, from the point of view of the Lebesgue measure, the set of rational numbers is of measure zero; thus, what really matters is what happens in the complement of this set, where the function is given as arctan x. It follows that the essential supremum is π/2 while the essential infimum is −π/2.

Lastly, consider the function f(x) = x3 defined for all real x. Its essential supremum is +∞, and its essential infimum is −∞.

Read more about this topic:  Essential Supremum And Essential Infimum

Famous quotes containing the word examples:

    There are many examples of women that have excelled in learning, and even in war, but this is no reason we should bring ‘em all up to Latin and Greek or else military discipline, instead of needle-work and housewifry.
    Bernard Mandeville (1670–1733)

    It is hardly to be believed how spiritual reflections when mixed with a little physics can hold people’s attention and give them a livelier idea of God than do the often ill-applied examples of his wrath.
    —G.C. (Georg Christoph)

    In the examples that I here bring in of what I have [read], heard, done or said, I have refrained from daring to alter even the smallest and most indifferent circumstances. My conscience falsifies not an iota; for my knowledge I cannot answer.
    Michel de Montaigne (1533–1592)