Envelope (mathematics) - Envelope of A Family of Surfaces

Envelope of A Family of Surfaces

A one-parameter family of surfaces in three-dimensional Euclidean space is given by a set of equations

depending on a real parameter a. For example the tangent planes to a surface along a curve in the surface form such a family.

Two surfaces corresponding to different values a and a' intersect in a common curve defined by

In the limit as a' approaches a, this curve tends to a curve contained in the surface at a

This curve is called the characteristic of the family at a. As a varies the locus of these characteristic curves defines a surface called the envelope of the family of surfaces.

The envelope of a family of surfaces is tangent to each surface in the family along the characteristic curve in that surface.

Read more about this topic:  Envelope (mathematics)

Famous quotes containing the words envelope, family and/or surfaces:

    ... all my letters are read. I like that. I usually put something in there that I would like the staff to see. If some of the staff are lazy and choose not to read the mail, I usually write on the envelope “Legal Mail.” This way it will surely be read. It’s important that we educate everybody as we go along.
    Jean Gump, U.S. pacifist. As quoted in The Great Divide, book 2, section 10, by Studs Terkel (1988)

    Our civility, England determines the style of, inasmuch as England is the strongest of the family of existing nations, and as we are the expansion of that people. It is that of a trading nation; it is a shopkeeping civility. The English lord is a retired shopkeeper, and has the prejudices and timidities of that profession.
    Ralph Waldo Emerson (1803–1882)

    But ice-crunching and loud gum-chewing, together with drumming on tables, and whistling the same tune seventy times in succession, because they indicate an indifference on the part of the perpetrator to the rest of the world in general, are not only registered on the delicate surfaces of the brain but eat little holes in it until it finally collapses or blows up.
    Robert Benchley (1889–1945)