Examples
Suppose we have functors then . In this case, the category of sets is complete, so we need only form the equalizer and in this case
the natural transformations from to . Intuitively, a natural transformation from to is a morphism from to for every in the category with compatibility conditions. Looking at the equalizer diagram defining the end makes the equivalence clear.
Let be a simplicial set. That is, is a functor . The Discrete topology gives a functor, where is the category of topological spaces. Moreover, there is a map which sends the object of to the standard simplex inside . Finally there is a functor which takes the product of two topological spaces. Define to be the composition of this product functor with . The coend of is the geometric realization of .
Read more about this topic: End (category Theory)
Famous quotes containing the word examples:
“In the examples that I here bring in of what I have [read], heard, done or said, I have refrained from daring to alter even the smallest and most indifferent circumstances. My conscience falsifies not an iota; for my knowledge I cannot answer.”
—Michel de Montaigne (15331592)
“It is hardly to be believed how spiritual reflections when mixed with a little physics can hold peoples attention and give them a livelier idea of God than do the often ill-applied examples of his wrath.”
—G.C. (Georg Christoph)
“No rules exist, and examples are simply life-savers answering the appeals of rules making vain attempts to exist.”
—André Breton (18961966)