In mathematics the elliptic rational functions are a sequence of rational functions with real coefficients. Elliptic rational functions are extensively used in the design of elliptic electronic filters. (These functions are sometimes called Chebyshev rational functions, not to be confused with certain other functions of the same name).
Rational elliptic functions are identified by a positive integer order n and include a parameter ξ ≥ 1 called the selectivity factor. A rational elliptic function of degree n in x with selectivity factor ξ is generally defined as:
- cd is the Jacobi elliptic cosine function.
- K is a complete elliptic integral of the first kind.
- is the discrimination factor, equal to the minimum value of the magnitude of for .
For many cases, in particular for orders of the form n = 2a3b where a and b are integers, the elliptic rational functions can be expressed using algebraic functions alone. Elliptic rational functions are closely related to the Chebyshev polynomials: Just as the circular trigonometric functions are special cases of the Jacobi elliptic functions, so the Chebyshev polynomials are special cases of the elliptic rational functions.
Read more about Elliptic Rational Functions: Expression As A Ratio of Polynomials, Particular Values
Famous quotes containing the words rational and/or functions:
“The poet makes himself a seer by a long, prodigious, and rational disordering of all the senses. Every form of love, of suffering, of madness; he searches himself, he consumes all the poisons in him, and keeps only their quintessences.”
—Arthur Rimbaud (18541891)
“Empirical science is apt to cloud the sight, and, by the very knowledge of functions and processes, to bereave the student of the manly contemplation of the whole.”
—Ralph Waldo Emerson (18031882)