Elementary Abelian Group

In group theory, an elementary abelian group is a finite abelian group, where every nontrivial element has order p, where p is a prime; in particular it is a p-group.

By the classification of finitely generated abelian groups, every elementary abelian group must be of the form

(Z/pZ)n

for n a non-negative integer (sometimes called the group's rank). Here, Z/pZ denotes the cyclic group of order p (or equivalently the integers mod p), and the notation means the n-fold Cartesian product.

Read more about Elementary Abelian Group:  Examples and Properties, Vector Space Structure, Automorphism Group, A Generalisation To Higher Orders, Related Groups

Famous quotes containing the words elementary and/or group:

    Listen. We converse as we live—by repeating, by combining and recombining a few elements over and over again just as nature does when of elementary particles it builds a world.
    William Gass (b. 1924)

    Now, honestly: if a large group of ... demonstrators blocked the entrances to St. Patrick’s Cathedral every Sunday for years, making it impossible for worshipers to get inside the church without someone escorting them through screaming crowds, wouldn’t some judge rule that those protesters could keep protesting, but behind police lines and out of the doorways?
    Anna Quindlen (b. 1953)