Elementary Abelian Group - Vector Space Structure

Vector Space Structure

Suppose V (Z/pZ)n is an elementary abelian group. Since Z/pZ Fp, the finite field of p elements, we have V = (Z/pZ)n Fpn, hence V can be considered as an n-dimensional vector space over the field Fp. Note that an elementary abelian group does not in general have a distinguished basis: choice of isomorphism V (Z/pZ)n corresponds to a choice of basis.

To the observant reader, it may appear that Fpn has more structure than the group V, in particular that it has scalar multiplication in addition to (vector/group) addition. However, V as an abelian group has a unique Z-module structure where the action of Z corresponds to repeated addition, and this Z-module structure is consistent with the Fp scalar multiplication. That is, c·g = g + g + ... + g (c times) where c in Fp (considered as an integer with 0 ≤ c < p) gives V a natural Fp-module structure.

Read more about this topic:  Elementary Abelian Group

Famous quotes containing the words space and/or structure:

    Here in the U.S., culture is not that delicious panacea which we Europeans consume in a sacramental mental space and which has its own special columns in the newspapers—and in people’s minds. Culture is space, speed, cinema, technology. This culture is authentic, if anything can be said to be authentic.
    Jean Baudrillard (b. 1929)

    ... the structure of our public morality crashed to earth. Above its grave a tombstone read, “Be tolerant—even of evil.” Logically the next step would be to say to our commonwealth’s criminals, “I disagree that it’s all right to rob and murder, but naturally I respect your opinion.” Tolerance is only complacence when it makes no distinction between right and wrong.
    Sarah Patton Boyle, U.S. civil rights activist and author. The Desegregated Heart, part 2, ch. 2 (1962)