Elementary Abelian Group - Vector Space Structure

Vector Space Structure

Suppose V (Z/pZ)n is an elementary abelian group. Since Z/pZ Fp, the finite field of p elements, we have V = (Z/pZ)n Fpn, hence V can be considered as an n-dimensional vector space over the field Fp. Note that an elementary abelian group does not in general have a distinguished basis: choice of isomorphism V (Z/pZ)n corresponds to a choice of basis.

To the observant reader, it may appear that Fpn has more structure than the group V, in particular that it has scalar multiplication in addition to (vector/group) addition. However, V as an abelian group has a unique Z-module structure where the action of Z corresponds to repeated addition, and this Z-module structure is consistent with the Fp scalar multiplication. That is, c·g = g + g + ... + g (c times) where c in Fp (considered as an integer with 0 ≤ c < p) gives V a natural Fp-module structure.

Read more about this topic:  Elementary Abelian Group

Famous quotes containing the words space and/or structure:

    But alas! I never could keep a promise. I do not blame myself for this weakness, because the fault must lie in my physical organization. It is likely that such a very liberal amount of space was given to the organ which enables me to make promises, that the organ which should enable me to keep them was crowded out. But I grieve not. I like no half-way things. I had rather have one faculty nobly developed than two faculties of mere ordinary capacity.
    Mark Twain [Samuel Langhorne Clemens] (1835–1910)

    Agnosticism is a perfectly respectable and tenable philosophical position; it is not dogmatic and makes no pronouncements about the ultimate truths of the universe. It remains open to evidence and persuasion; lacking faith, it nevertheless does not deride faith. Atheism, on the other hand, is as unyielding and dogmatic about religious belief as true believers are about heathens. It tries to use reason to demolish a structure that is not built upon reason.
    Sydney J. Harris (1917–1986)