Electrovalency

Electrovalency is a measurement of the net electric charge of an ion and is used when balancing chemical reactions. Electrovalency is related to the concepts of electronegativity and valence electrons, and indicates the number of electrons necessary for an ion to have a balanced electric charge.

Atoms that have an almost full or almost empty valence shells tend to be very reactive. Atoms that are strongly electronegative (as is the case with halogens) often only have one or two missing electrons in their valence shell, and frequently bond with other molecules or gain electrons to form anions. Atoms that are weakly electronegative (such as alkali metals) have relatively few valence electrons that can easily be lost to atoms that are strongly electronegative. As a result, weakly electronegative atoms tend to lose their electrons and form cations.

The electrovalency of an element or compound is expressed as a charge. Atoms or molecules that have lost electrons have an electrovalency greater than zero and are known as cations. When an atom or molecule gains electrons, it is called an anion. When an atom or molecule has an electrovalency of zero, it has no net electric charge. When writing about an ion, the convention is to write the chemical formula followed by the electrovalency as a superscript, illustrated below:

Ag+, Co2+, Fe3+, CN−, CO32−, PO43−. When an ion only contains a single atom it is called a monatomic ion, and when it contains more than one atom, it is called a polyatomic ion. On the above list, Ag+ would be a monatomic cation and PO43− would be a polyatomic anion.

Read more about Electrovalency:  Electrovalency Tables, Electrovalency in Chemical Reactions