In classical electromagnetism, the electric potential (a scalar quantity denoted by φ, φE or V and also called the electric field potential or the electrostatic potential) at a point is equal to the electric potential energy (measured in joules) of a charged particle at that location divided by the charge (measured in coulombs) of the particle. The electric potential is independent of the test particle's charge - it is determined by the electric field alone. The electric potential can be calculated at a point in either a static (time-invariant) electric field or in a dynamic (varying with time) electric field at a specific time, and has the units of joules per coulomb, or volts.
There is also a generalized electric scalar potential that is used in electrodynamics when time-varying electromagnetic fields are present. This generalized electric potential cannot be simply interpreted as the ratio of potential energy to charge, however.
Read more about Electric Potential: Introduction, In Electrostatics, Generalization To Electrodynamics, Units, Galvani Potential Versus Electrochemical Potential
Famous quotes containing the words electric and/or potential:
“The sight of a planet through a telescope is worth all the course on astronomy; the shock of the electric spark in the elbow, outvalues all the theories; the taste of the nitrous oxide, the firing of an artificial volcano, are better than volumes of chemistry.”
—Ralph Waldo Emerson (18031882)
“Laughing at someone else is an excellent way of learning how to laugh at oneself; and questioning what seem to be the absurd beliefs of another group is a good way of recognizing the potential absurdity of many of ones own cherished beliefs.”
—Gore Vidal (b. 1925)