Mathematical Form
The Einstein field equations (EFE) may be written in the form:
where is the Ricci curvature tensor, the scalar curvature, the metric tensor, is the cosmological constant, is Newton's gravitational constant, the speed of light in vacuum, and the stress–energy tensor.
The EFE is a tensor equation relating a set of symmetric 4 x 4 tensors. Each tensor has 10 independent components. The four Bianchi identities reduce the number of independent equations from 10 to 6, leaving the metric with four gauge fixing degrees of freedom, which correspond to the freedom to choose a coordinate system.
Although the Einstein field equations were initially formulated in the context of a four-dimensional theory, some theorists have explored their consequences in n dimensions. The equations in contexts outside of general relativity are still referred to as the Einstein field equations. The vacuum field equations (obtained when T is identically zero) define Einstein manifolds.
Despite the simple appearance of the equations they are, in fact, quite complicated. Given a specified distribution of matter and energy in the form of a stress–energy tensor, the EFE are understood to be equations for the metric tensor, as both the Ricci tensor and scalar curvature depend on the metric in a complicated nonlinear manner. In fact, when fully written out, the EFE are a system of 10 coupled, nonlinear, hyperbolic-elliptic partial differential equations.
One can write the EFE in a more compact form by defining the Einstein tensor
which is a symmetric second-rank tensor that is a function of the metric. The EFE can then be written as
Using geometrized units where G = c = 1, this can be rewritten as
The expression on the left represents the curvature of spacetime as determined by the metric; the expression on the right represents the matter/energy content of spacetime. The EFE can then be interpreted as a set of equations dictating how matter/energy determines the curvature of spacetime.
These equations, together with the geodesic equation, which dictates how freely-falling matter moves through space-time, form the core of the mathematical formulation of general relativity.
Read more about this topic: Einstein Field Equations
Famous quotes containing the words mathematical form, mathematical and/or form:
“The most distinct and beautiful statement of any truth must take at last the mathematical form.”
—Henry David Thoreau (18171862)
“What is history? Its beginning is that of the centuries of systematic work devoted to the solution of the enigma of death, so that death itself may eventually be overcome. That is why people write symphonies, and why they discover mathematical infinity and electromagnetic waves.”
—Boris Pasternak (18901960)
“In many places the road was in that condition called repaired, having just been whittled into the required semicylindrical form with the shovel and scraper, with all the softest inequalities in the middle, like a hogs back with the bristles up.”
—Henry David Thoreau (18171862)