Effective Atomic Number

The effective atomic number Zeff, (sometimes referred to as the effective nuclear charge) of an atom is the number of protons an electron in the element effectively 'sees' due to screening by inner-shell electrons. It is a measure of the electrostatic interaction between the negatively charged electrons and positively charged protons in the atom. One can view the electrons in an atom as being 'stacked' by energy outside the nucleus; the lowest energy electrons (such as the 1s and 2s electrons) occupy the space closest to the nucleus, and electrons of higher energy are located further from the nucleus.

The binding energy of an electron, or the energy needed to remove the electron from the atom, is a function of the electrostatic interaction between the negatively charged electrons and the positively charged nucleus. In Iron, atomic number 26, for instance, the nucleus contains 26 protons. The electrons that are closest to the nucleus will 'see' nearly all of them. However, electrons further away are screened from the nucleus by other electrons in between, and feel less electrostatic interaction as a result. The 1s electron of Iron (the closest one to the nucleus) sees an effective atomic number (number of protons) of 25. The reason why it is not 26 is because some of the electrons in the atom end up repelling the others, giving a net lower electrostatic interaction with the nucleus. One way of envisioning this effect is to imagine the 1s electron sitting on one side of the 26 protons in the nucleus, with another electron sitting on the other side; each electron will feel less than the attractive force of 26 protons because the other electron contributes a repelling force. The 4s electrons in Iron, which are furthest from the nucleus, feel an effective atomic number of only 5.43 because of the 25 electrons in between it and the nucleus screening the charge.

Effective atomic numbers are useful not only in understanding why electrons further from the nucleus are so much more weakly bound than those closer to the nucleus, but also because they can tell us when to use simplified methods of calculating other properties and interactions. For instance, Lithium, atomic number 3, has two electrons in the 1s shell and one in the 2s shell. Because the two 1s electrons screen the protons to give an effective atomic number for the 2s electron close to 1, we can treat this 2s valence electron with a hydrogenic model.

Mathematically, the effective atomic number Zeff can be calculated using methods known as "self-consistent field" calculations, but in simplified situations is just taken as the atomic number minus the number of electrons between the nucleus and the electron being considered.

Read more about Effective Atomic Number:  For A Compound or Mixture

Famous quotes containing the words effective, atomic and/or number:

    They [women] can use their abilities to support each other, even as they develop more effective and appropriate ways of dealing with power.... Women do not need to diminish other women ... [they] need the power to advance their own development, but they do not “need” the power to limit the development of others.
    Jean Baker Miller (20th century)

    The totality of our so-called knowledge or beliefs, from the most casual matters of geography and history to the profoundest laws of atomic physics or even of pure mathematics and logic, is a man-made fabric which impinges on experience only along the edges. Or, to change the figure, total science is like a field of force whose boundary conditions are experience.
    Willard Van Orman Quine (b. 1908)

    As Jerome expanded, its chances for the title, “the toughest little town in the West,” increased and when it was incorporated in 1899 the citizens were able to support the claim by pointing to the number of thick stone shutters on the fronts of all saloons, gambling halls, and other places of business for protection against gunfire.
    —Administration in the State of Ariz, U.S. public relief program (1935-1943)