E8 Lattice - Sphere Packings and Kissing Numbers

Sphere Packings and Kissing Numbers

The E8 lattice is remarkable in that it gives solutions to the lattice packing problem and the kissing number problem in 8 dimensions.

The general sphere packing problem asks what is the densest way to pack n-dimensional (solid) spheres in Rn so that no two spheres overlap. Lattice packings are special types of sphere packings where the spheres are centered at the points of a lattice. Placing spheres of radius 1/√2 at the points of the E8 lattice gives a lattice packing in R8 with a density of

It is known that this is the maximum density that can be achieved by a lattice packing in 8 dimensions. Furthermore, the E8 lattice is the unique lattice (up to isometries and rescalings) with this density. It is conjectured this density is, in fact, optimal (even among irregular packings). Researchers have recently shown that no irregular packing density can exceed that of the E8 lattice by a factor of more than 1 + 10−14.

The kissing number problem asks what is the maximum number of spheres of a fixed radius that can touch (or "kiss") a central sphere of the same radius. In the E8 lattice packing mentioned above any given sphere touches 240 neighboring spheres. This is because there are 240 lattice vectors of minimum nonzero norm (the roots of the E8 lattice). It was shown in 1979 that this is the maximum possible number in 8-dimensions.

The kissing number problem is remarkably difficult and solutions are only known in 1, 2, 3, 4, 8, and 24 dimensions. Perhaps surprisingly, it is easier to find the solution in 8 (and 24) dimensions than in 3 or 4. This follows from the special properties of the E8 lattice (and its 24-dimensional cousin, the Leech lattice).

Read more about this topic:  E8 Lattice

Famous quotes containing the words sphere, kissing and/or numbers:

    Everything goes, everything comes back; eternally rolls the wheel of being. Everything dies, everything blossoms again; eternally runs the year of being. Everything breaks, everything is joined anew; eternally the same house of being is built. Everything parts, everything greets every other thing again; eternally the ring of being remains faithful to itself. In every Now, being begins; round every Here rolls the sphere There. The center is everywhere. Bent is the path of eternity.
    Friedrich Nietzsche (1844–1900)

    bacterial creepers
    Wriggling through wounds
    Like elvers in ponds,
    Their wan mouths kissing the warm sutures,
    Cleaning and caressing,
    Creeping and healing.
    Theodore Roethke (1908–1963)

    What culture lacks is the taste for anonymous, innumerable germination. Culture is smitten with counting and measuring; it feels out of place and uncomfortable with the innumerable; its efforts tend, on the contrary, to limit the numbers in all domains; it tries to count on its fingers.
    Jean Dubuffet (1901–1985)