Classification of Semisimple Lie Algebras
For more details on this topic, see Semisimple Lie algebra#Classification.The fundamental interest in Dynkin diagrams is that they classify semisimple Lie algebras over algebraically closed fields. One classifies such Lie algebras via their root system, which can be represented by a Dynkin diagram. One then classifies Dynkin diagrams according to the constraints they must satisfy, as described below.
Dropping the direction on the graph edges corresponds to replacing a root system by the finite reflection group it generates, the so-called Weyl group, and thus undirected Dynkin diagrams classify Weyl groups.
Read more about this topic: Dynkin Diagram
Famous quotes containing the word lie:
“The wolf also shall dwell with the lamb, and the leopard shall lie down with the kid; and the calf and the young lion and the fatling together; and a little child shall lead them.”
—Bible: Hebrew Isaiah 11:6.