Dual Wavelet - Definition

Definition

Given a square integrable function, define the series by

for integers .

Such a function is called an R-function if the linear span of is dense in, and if there exist positive constants A, B with such that

A \Vert c_{jk} \Vert^2_{l^2} \leq
\bigg\Vert \sum_{jk=-\infty}^\infty c_{jk}\psi_{jk}\bigg\Vert^2_{L^2} \leq
B \Vert c_{jk} \Vert^2_{l^2}\,

for all bi-infinite square summable series . Here, denotes the square-sum norm:

and denotes the usual norm on :

By the Riesz representation theorem, there exists a unique dual basis such that

where is the Kronecker delta and is the usual inner product on . Indeed, there exists a unique series representation for a square integrable function f expressed in this basis:

If there exists a function such that

then is called the dual wavelet or the wavelet dual to ψ. In general, for some given R-function ψ, the dual will not exist. In the special case of, the wavelet is said to be an orthogonal wavelet.

An example of an R-function without a dual is easy to construct. Let be an orthogonal wavelet. Then define for some complex number z. It is straightforward to show that this ψ does not have a wavelet dual.

Read more about this topic:  Dual Wavelet

Famous quotes containing the word definition:

    Scientific method is the way to truth, but it affords, even in
    principle, no unique definition of truth. Any so-called pragmatic
    definition of truth is doomed to failure equally.
    Willard Van Orman Quine (b. 1908)

    According to our social pyramid, all men who feel displaced racially, culturally, and/or because of economic hardships will turn on those whom they feel they can order and humiliate, usually women, children, and animals—just as they have been ordered and humiliated by those privileged few who are in power. However, this definition does not explain why there are privileged men who behave this way toward women.
    Ana Castillo (b. 1953)

    Perhaps the best definition of progress would be the continuing efforts of men and women to narrow the gap between the convenience of the powers that be and the unwritten charter.
    Nadine Gordimer (b. 1923)