Dragon Curve - Occurrences of The Dragon Curve in Solution Sets

Occurrences of The Dragon Curve in Solution Sets

Having obtained the set of solutions to a differential equation, any linear combination of the solutions will, because of the superposition principle also obey the original equation. In other words, new solutions are obtained by applying a function to the set of existing solutions. This is similar to how an iterated function system produce new points in a set, though not all IFS are linear functions. In a conceptually similar vein, a set of Littlewood polynomials can be arrived at by such iterated applications of a set of functions.

A Littlewood polynomial is a polynomial : where all .

For some |w| < 1 we define the following functions:

Starting at z=0 we can generate all Littlewood polynomials of degree d using these functions iteratively d+1 times. For instance:

It can be seen that for w = (1+i)/2, the above pair of functions is equivalent to the IFS formulation of the Heighway dragon. That is, the Heighway dragon, iterated to a certain iteration, describe the set of all Littlewood polynomials up to a certain degree, evaluated at the point w = (1+i)/2. Indeed, when plotting a sufficiently high number of roots of the Littlewood polynomials, structures similar to the dragon curve appear at points close to these coordinates.

Read more about this topic:  Dragon Curve

Famous quotes containing the words occurrences of, occurrences, dragon, curve, solution and/or sets:

    If to be venerated for benevolence, if to be admired for talents, if to be esteemed for patriotism, if to be beloved for philanthropy, can gratify the human mind, you must have the pleasing consolation to know that you have not lived in vain. And I flatter myself that it will not be ranked among the least grateful occurrences of your life to be assured that, so long as I retain my memory, you will be thought on with respect, veneration, and affection by your sincere friend.
    George Washington (1732–1799)

    If to be venerated for benevolence, if to be admired for talents, if to be esteemed for patriotism, if to be beloved for philanthropy, can gratify the human mind, you must have the pleasing consolation to know that you have not lived in vain. And I flatter myself that it will not be ranked among the least grateful occurrences of your life to be assured that, so long as I retain my memory, you will be thought on with respect, veneration, and affection by your sincere friend.
    George Washington (1732–1799)

    Sir Eglamour, that worthy knight,
    He took his sword and went to fight;
    And as he rode both hill and dale,
    Armed upon his shirt of mail,
    A dragon came out of his den,
    Had slain, God knows how many men!
    Samuel Rowlands (1570?–1630?)

    The years-heired feature that can
    In curve and voice and eye
    Despise the human span
    Of durance—that is I;
    The eternal thing in man,
    That heeds no call to die.
    Thomas Hardy (1840–1928)

    To the questions of the officiously meddling police Falter replied absently and tersely; but, when he finally grew tired of this pestering, he pointed out that, having accidentally solved “the riddle of the universe,” he had yielded to artful exhortation and shared that solution with his inquisitive interlocutor, whereupon the latter had died of astonishment.
    Vladimir Nabokov (1899–1977)

    Analysis as an instrument of enlightenment and civilization is good, in so far as it shatters absurd convictions, acts as a solvent upon natural prejudices, and undermines authority; good, in other words, in that it sets free, refines, humanizes, makes slaves ripe for freedom. But it is bad, very bad, in so far as it stands in the way of action, cannot shape the vital forces, maims life at its roots. Analysis can be a very unappetizing affair, as much so as death.
    Thomas Mann (1875–1955)