Doppler Imaging

Doppler Imaging

Inhomogeneous structures on stellar surfaces, i.e. temperature differences, chemical composition or magnetic fields, create characteristic distortions in the spectral lines due to the Doppler effect. These distortions will move across spectral line profiles due to the stellar rotation. The technique to reconstruct these structures on the stellar surface is called Doppler-imaging, often based on the Maximum Entropy image reconstruction to find the stellar image. This technique gives the smoothest and simplest image that is consistent with observations.

To understand the magnetic field and activity on stars studies of the Sun is not sufficient, therefore studies of other stars are necessary. Periodic changes in brightness have long been observed in stars which indicate cooler or brighter starspots on the surface. These spots are larger than the ones on the Sun, covering up to 20% of the star. Spots with similar size as the ones on the Sun would hardly give rise to changes in intensity. In order to understand the magnetic field structure of a star it is not enough to know that spots exist, their location and extent are also important.

Read more about Doppler Imaging:  History, Criteria For Doppler Imaging, How Does It Work?, Zeeman-Doppler Imaging, Binary Stars