Doppler Imaging - How Does IT Work?

How Does It Work?

In the simplest case, dark starspots decrease the amount of light coming from one specific region; this causes a dip or notch in the spectral line. As the star rotates the notch will first appear on the short wavelength side when it becomes visible towards the observer. Then it will move across the line profile and increase in angular size since the spot is seen more face-on, the maximum is when the spot passes the star’s meridian. The opposite happens when the spot moves over to the other side of the star. The spot has its maximum Doppler shift for;

Where l is the latitude and L is the longitude. Thus signatures from spots at higher latitudes will be restricted to spectral line centers, which will also occurring when the rotation axis is not perpendicular to the line of sight. If the spot is located at high latitude it is possible that it will always be seen, in which case the distortion in the line profile will move back and forth and only the amount of distortion will change.

Doppler imaging can also be made for changing chemical abundances across the stellar surface; these may not give rise to notches in the line profile since they can be brighter then the rest of the surface, instead producing a dip in the line profile.

Read more about this topic:  Doppler Imaging