Domain Of A Function
In mathematics, the domain of definition or simply the domain of a function is the set of "input" or argument values for which the function is defined. That is, the function provides an "output" or value for each member of the domain.
For instance, the domain of cosine is the set of all real numbers, while the domain of the square root consists only of numbers greater than or equal to 0 (ignoring complex numbers in both cases). For a function whose domain is a subset of the real numbers, when the function is represented in an xy Cartesian coordinate system, the domain is represented on the x-axis.
Read more about Domain Of A Function: Formal Definition, Natural Domain, Domain of A Partial Function, Category Theory, Real and Complex Analysis, More Examples
Famous quotes containing the words domain of, domain and/or function:
“Every sign is subject to the criteria of ideological evaluation.... The domain of ideology coincides with the domain of signs. They equate with one another. Wherever a sign is present, ideology is present, too. Everything ideological possesses semiotic value.”
—V.N. (Valintin Nikolaevic)
“Without metaphor the handling of general concepts such as culture and civilization becomes impossible, and that of disease and disorder is the obvious one for the case in point. Is not crisis itself a concept we owe to Hippocrates? In the social and cultural domain no metaphor is more apt than the pathological one.”
—Johan Huizinga (18721945)
“The more books we read, the clearer it becomes that the true function of a writer is to produce a masterpiece and that no other task is of any consequence.”
—Cyril Connolly (19031974)