Disjoint Union (topology) - Properties

Properties

The disjoint union space X, together with the canonical injections, can be characterized by the following universal property: If Y is a topological space, and fi : XiY is a continuous map for each iI, then there exists precisely one continuous map f : XY such that the following set of diagrams commute:

This shows that the disjoint union is the coproduct in the category of topological spaces. It follows from the above universal property that a map f : XY is continuous iff fi = f o φi is continuous for all i in I.

In addition to being continuous, the canonical injections φi : XiX are open and closed maps. It follows that the injections are topological embeddings so that each Xi may be canonically thought of as a subspace of X.

Read more about this topic:  Disjoint Union (topology)

Famous quotes containing the word properties:

    A drop of water has the properties of the sea, but cannot exhibit a storm. There is beauty of a concert, as well as of a flute; strength of a host, as well as of a hero.
    Ralph Waldo Emerson (1803–1882)

    The reason why men enter into society, is the preservation of their property; and the end why they choose and authorize a legislative, is, that there may be laws made, and rules set, as guards and fences to the properties of all the members of the society: to limit the power, and moderate the dominion, of every part and member of the society.
    John Locke (1632–1704)