Disjoint Union (topology)
In general topology and related areas of mathematics, the disjoint union (also called the direct sum, free union, free sum, topological sum, or coproduct) of a family of topological spaces is a space formed by equipping the disjoint union of the underlying sets with a natural topology called the disjoint union topology. Roughly speaking, two or more spaces may be considered together, each looking as it would alone.
The name coproduct originates from the fact that the disjoint union is the categorical dual of the product space construction.
Read more about Disjoint Union (topology): Definition, Properties, Examples, Preservation of Topological Properties
Famous quotes containing the word union:
“Our age is pre-eminently the age of sympathy, as the eighteenth century was the age of reason. Our ideal men and women are they, whose sympathies have had the widest culture, whose aims do not end with self, whose philanthropy, though centrifugal, reaches around the globe.”
—Frances E. Willard 18391898, U.S. president of the Womens Christian Temperance Union 1879-1891, author, activist. The Womans Magazine, pp. 137-40 (January 1887)