Discriminant of An Algebraic Number Field - Definition

Definition

Let K be an algebraic number field, and let OK be its ring of integers. Let b1, ..., bn be an integral basis of OK (i.e. a basis as a Z-module), and let {σ1, ..., σn} be the set of embeddings of K into the complex numbers (i.e. ring homomorphisms KC). The discriminant of K is the square of the determinant of the n by n matrix B whose (i,j)-entry is σi(bj). Symbolically,

\Delta_K=\operatorname{det}\left(\begin{array}{cccc}
\sigma_1(b_1) & \sigma_1(b_2) &\cdots & \sigma_1(b_n) \\
\sigma_2(b_1) & \ddots & & \vdots \\
\vdots & & \ddots & \vdots \\
\sigma_n(b_1) & \cdots & \cdots & \sigma_n(b_n)
\end{array}\right)^2.


Equivalently, the trace from K to Q can be used. Specifically, define the trace form to be the matrix whose (i,j)-entry is TrK/Q(bibj). This matrix equals BTB, so the discriminant of K is the determinant of this matrix.

Read more about this topic:  Discriminant Of An Algebraic Number Field

Famous quotes containing the word definition:

    Perhaps the best definition of progress would be the continuing efforts of men and women to narrow the gap between the convenience of the powers that be and the unwritten charter.
    Nadine Gordimer (b. 1923)

    According to our social pyramid, all men who feel displaced racially, culturally, and/or because of economic hardships will turn on those whom they feel they can order and humiliate, usually women, children, and animals—just as they have been ordered and humiliated by those privileged few who are in power. However, this definition does not explain why there are privileged men who behave this way toward women.
    Ana Castillo (b. 1953)

    No man, not even a doctor, ever gives any other definition of what a nurse should be than this—”devoted and obedient.” This definition would do just as well for a porter. It might even do for a horse. It would not do for a policeman.
    Florence Nightingale (1820–1910)