In abstract algebra, a discrete valuation ring (DVR) is a principal ideal domain (PID) with exactly one non-zero maximal ideal.
This means a DVR is an integral domain R which satisfies any one of the following equivalent conditions:
- R is a local principal ideal domain, and not a field.
- R is a valuation ring with a value group isomorphic to the integers under addition.
- R is a local Dedekind domain and not a field.
- R is a noetherian local ring with Krull dimension one, and the maximal ideal of R is principal.
- R is an integrally closed noetherian local ring with Krull dimension one.
- R is a principal ideal domain with a unique non-zero prime ideal.
- R is a principal ideal domain with a unique irreducible element (up to multiplication by units).
- R is a unique factorization domain with a unique irreducible element (up to multiplication by units).
- R is not a field, and every nonzero fractional ideal of R is irreducible in the sense that it cannot be written as finite intersection of fractional ideals properly containing it.
- There is some Dedekind valuation ν on the field of fractions K of R, such that R={x : x in K, ν(x) ≥ 0}.
Read more about Discrete Valuation Ring: Examples, Uniformizing Parameter, Topology
Famous quotes containing the words discrete and/or ring:
“One can describe a landscape in many different words and sentences, but one would not normally cut up a picture of a landscape and rearrange it in different patterns in order to describe it in different ways. Because a photograph is not composed of discrete units strung out in a linear row of meaningful pieces, we do not understand it by looking at one element after another in a set sequence. The photograph is understood in one act of seeing; it is perceived in a gestalt.”
—Joshua Meyrowitz, U.S. educator, media critic. The Blurring of Public and Private Behaviors, No Sense of Place: The Impact of Electronic Media on Social Behavior, Oxford University Press (1985)
“What is a novel? I say: an invented story. At the same time a story which, though invented has the power to ring true. True to what? True to life as the reader knows life to be or, it may be, feels life to be. And I mean the adult, the grown-up reader. Such a reader has outgrown fairy tales, and we do not want the fantastic and the impossible. So I say to you that a novel must stand up to the adult tests of reality.”
—Elizabeth Bowen (18991973)