Theory
Discrete tomography has strong connections with other mathematical fields, such as number theory, discrete mathematics, complexity theory and combinatorics. In fact, a number of discrete tomography problems were first discussed as combinatorial problems. In 1957, Herbert John Ryser found a necessary and sufficient condition for a pair of vectors being the two orthogonal projections of a discrete set. In the proof of his theorem, Ryser also described a reconstruction algorithm, the very first reconstruction algorithm for a general discrete set from two orthogonal projections. In the same year, David Gale found the same consistency conditions, but in connection with the network flow problem. Another result of Ryser is the definition of the switching operation by which discrete sets having the same projections can be transformed into each other.
The problem of reconstructing a binary image from a small number of projections generally leads to a large number of solutions. It is desirable to limit the class of possible solutions to only those that are typical of the class of the images which contains the image being reconstructed by using a priori information, such as convexity or connectedness.
Read more about this topic: Discrete Tomography
Famous quotes containing the word theory:
“The theory [before the twentieth century] ... was that all the jobs in the world belonged by right to men, and that only men were by nature entitled to wages. If a woman earned money, outside domestic service, it was because some misfortune had deprived her of masculine protection.”
—Rheta Childe Dorr (18661948)
“The theory seems to be that so long as a man is a failure he is one of Gods chillun, but that as soon as he has any luck he owes it to the Devil.”
—H.L. (Henry Lewis)
“There is in him, hidden deep-down, a great instinctive artist, and hence the makings of an aristocrat. In his muddled way, held back by the manacles of his race and time, and his steps made uncertain by a guiding theory which too often eludes his own comprehension, he yet manages to produce works of unquestionable beauty and authority, and to interpret life in a manner that is poignant and illuminating.”
—H.L. (Henry Lewis)