Discrete Tomography

Discrete Tomography focuses on the problem of reconstruction of binary images (or finite subsets of the integer lattice) from a small number of their projections.

In general, tomography deals with the problem of determining shape and dimensional information of an object from a set of projections. From the mathematical point of view, the object corresponds to a function and the problem posed is to reconstruct this function from its integrals or sums over subsets of its domain. In general, the tomographic inversion problem may be continuous or discrete. In continuous tomography both the domain and the range of the function are continuous and line integrals are used. In discrete tomography the domain of the function may be either discrete or continuous, and the range of the function is a finite set of real, usually nonnegative numbers. In continuous tomography when a large number of projections is available, accurate reconstructions can be made by many different algorithms. It is typical for discrete tomography that only a few projections (line sums) are used. In this case, conventional techniques all fail. A special case of discrete tomography deals with the problem of the reconstruction of a binary image from a small number of projections. The name discrete tomography is due to Larry Shepp, who organized the first meeting devoted to this topic (DIMACS Mini-Symposium on Discrete Tomography, September 19, 1994, Rutgers University).

Read more about Discrete Tomography:  Theory, Algorithms, Applications

Famous quotes containing the word discrete:

    The mastery of one’s phonemes may be compared to the violinist’s mastery of fingering. The violin string lends itself to a continuous gradation of tones, but the musician learns the discrete intervals at which to stop the string in order to play the conventional notes. We sound our phonemes like poor violinists, approximating each time to a fancied norm, and we receive our neighbor’s renderings indulgently, mentally rectifying the more glaring inaccuracies.
    W.V. Quine (b. 1908)