Discrete Logarithm - Definition

Definition

In general, let G be a finite cyclic group with n elements. We assume that the group is written multiplicatively. Let b be a generator of G; then every element g of G can be written in the form g = bk for some integer k. Furthermore, any two such integers k1 and k2 representing g will be congruent modulo n. We can thus define a function

(where Zn denotes the ring of integers modulo n) by assigning to each g the congruence class of k modulo n. This function is a group isomorphism, called the discrete logarithm to base b.

The familiar base change formula for ordinary logarithms remains valid: If c is another generator of G, then we have

Read more about this topic:  Discrete Logarithm

Famous quotes containing the word definition:

    The man who knows governments most completely is he who troubles himself least about a definition which shall give their essence. Enjoying an intimate acquaintance with all their particularities in turn, he would naturally regard an abstract conception in which these were unified as a thing more misleading than enlightening.
    William James (1842–1910)

    Was man made stupid to see his own stupidity?
    Is God by definition indifferent, beyond us all?
    Is the eternal truth man’s fighting soul
    Wherein the Beast ravens in its own avidity?
    Richard Eberhart (b. 1904)

    I’m beginning to think that the proper definition of “Man” is “an animal that writes letters.”
    Lewis Carroll [Charles Lutwidge Dodgson] (1832–1898)