Discontinuous Linear Map - Beyond Normed Spaces

Beyond Normed Spaces

The argument for the existence of discontinuous linear maps on normed spaces can be generalized to all metrisable topological vector spaces, especially to all Fréchet-spaces, but there exist infinite dimensional locally convex topological vector spaces such that every functional is continuous. On the other hand, the Hahn–Banach theorem, which applies to all locally convex spaces, guarantees the existence of many continuous linear functionals, and so a large dual space. In fact, to every convex set, the Minkowski gauge associates a continuous linear functional. The upshot is that spaces with fewer convex sets have fewer functionals, and in the worst case scenario, a space may have no functionals at all other than the zero functional. This is the case for the Lp(R,dx) spaces with 0 < p < 1, from which it follows that these spaces are nonconvex. Note that here is indicated the Lebesgue measure on the real line. There are other Lp spaces with 0 < p < 1 which do have nontrivial dual spaces.

Another such example is the space of real-valued measurable functions on the unit interval with quasinorm given by

This non-locally convex space has a trivial dual space.

One can consider even more general spaces. For example, the existence of a homomorphism between complete separable metric groups can also be shown nonconstructively.

Read more about this topic:  Discontinuous Linear Map

Famous quotes containing the word spaces:

    Though there were numerous vessels at this great distance in the horizon on every side, yet the vast spaces between them, like the spaces between the stars,—far as they were distant from us, so were they from one another,—nay, some were twice as far from each other as from us,—impressed us with a sense of the immensity of the ocean, the “unfruitful ocean,” as it has been called, and we could see what proportion man and his works bear to the globe.
    Henry David Thoreau (1817–1862)