Dirichlet Series - Formal Dirichlet Series

Formal Dirichlet Series

A formal Dirichlet series over a ring R is associated to a function a from the positive integers to R

with addition and multiplication defined by

where

is the pointwise sum and

is the Dirichlet convolution of a and b.

The formal Dirichlet series form a ring Ω, indeed an R-algebra, with the zero function as additive zero element and the function δ defined by δ(1)=1, δ(n)=0 for n>1 as multiplicative identity. An element of this ring is invertible if a(1) is invertible in R. If R is commutative, so is Ω; if R is an integral domain, so is Ω. The non-zero multiplicative functions form a subgroup of the group of units of Ω.

The ring of formal Dirichlet series over C is isomorphic to a ring of formal power series in countably many variables.

Read more about this topic:  Dirichlet Series

Famous quotes containing the words formal and/or series:

    On every formal visit a child ought to be of the party, by way of provision for discourse.
    Jane Austen (1775–1817)

    In the order of literature, as in others, there is no act that is not the coronation of an infinite series of causes and the source of an infinite series of effects.
    Jorge Luis Borges (1899–1986)