Formal Dirichlet Series
A formal Dirichlet series over a ring R is associated to a function a from the positive integers to R
with addition and multiplication defined by
where
is the pointwise sum and
is the Dirichlet convolution of a and b.
The formal Dirichlet series form a ring Ω, indeed an R-algebra, with the zero function as additive zero element and the function δ defined by δ(1)=1, δ(n)=0 for n>1 as multiplicative identity. An element of this ring is invertible if a(1) is invertible in R. If R is commutative, so is Ω; if R is an integral domain, so is Ω. The non-zero multiplicative functions form a subgroup of the group of units of Ω.
The ring of formal Dirichlet series over C is isomorphic to a ring of formal power series in countably many variables.
Read more about this topic: Dirichlet Series
Famous quotes containing the words formal and/or series:
“True variety is in that plenitude of real and unexpected elements, in the branch charged with blue flowers thrusting itself, against all expectations, from the springtime hedge which seems already too full, while the purely formal imitation of variety ... is but void and uniformity, that is, that which is most opposed to variety....”
—Marcel Proust (18711922)
“Personality is an unbroken series of successful gestures.”
—F. Scott Fitzgerald (18961940)