Dirichlet Problem - Methods of Solution

Methods of Solution

For bounded domains, the Dirichlet problem can be solved using the Perron method, which relies on the maximum principle for subharmonic functions. This approach is described in many text books. It is not well-suited to describing smoothness of solutions when the boundary is smooth. Another classical Hilbert space approach through Sobolev spaces does yield such information. The solution of the Dirichlet problem using Sobolev spaces for planar domains can be used to prove the smooth version of the Riemann mapping theorem. Bell (1992) has outlined a different approach for establishing the smooth Riemann mapping theorem, based on the reproducing kernels of Szegő and Bergman, and in turn used it to solve the Dirichlet problem. The classical methods of potential theory allow the Dirichlet problem to be solved directly in terms of integral operators, for which the standard theory of compact and Fredholm operators is applicable. The same methods work equally for the Neumann problem.

Read more about this topic:  Dirichlet Problem

Famous quotes containing the words methods of, methods and/or solution:

    I believe in women; and in their right to their own best possibilities in every department of life. I believe that the methods of dress practiced among women are a marked hindrance to the realization of these possibilities, and should be scorned or persuaded out of society.
    Elizabeth Stuart Phelps (1844–1911)

    We can best help you to prevent war not by repeating your words and following your methods but by finding new words and creating new methods.
    Virginia Woolf (1882–1941)

    I can’t quite define my aversion to asking questions of strangers. From snatches of family battles which I have heard drifting up from railway stations and street corners, I gather that there are a great many men who share my dislike for it, as well as an equal number of women who ... believe it to be the solution to most of this world’s problems.
    Robert Benchley (1889–1945)