Dirichlet Character - Character Orthogonality

Character Orthogonality

The orthogonality relations for characters of a finite group transfer to Dirichlet characters. If we fix a character χ modulo n then the sum

unless χ is principal, in which case the sum is φ(n). Similarly, if we fix a residue class a modulo n and sum over all characters we have

unless a=1 in which case the sum is φ(n). We deduce that any periodic function with period n supported on the residue classes prime to n is a linear combination of Dirichlet characters.

Read more about this topic:  Dirichlet Character

Famous quotes containing the word character:

    What the statesman is most anxious to produce is a certain moral character in his fellow citizens, namely a disposition to virtue and the performance of virtuous actions.
    Aristotle (384–22 B.C.)