Direct Sum of Modules - Internal Direct Sum

Internal Direct Sum

See also: Internal direct product

Suppose M is some R-module, and Mi is a submodule of M for every i in I. If every x in M can be written in one and only one way as a sum of finitely many elements of the Mi, then we say that M is the internal direct sum of the submodules Mi (Halmos 1974, §18). In this case, M is naturally isomorphic to the (external) direct sum of the Mi as defined above (Adamson 1972, p.61).

A submodule N of M is a direct summand of M if there exists some other submodule N′ of M such that M is the internal direct sum of N and N′. In this case, N and N′ are complementary subspaces.

Read more about this topic:  Direct Sum Of Modules

Famous quotes containing the words internal, direct and/or sum:

    Unlike femininity, relaxed masculinity is at bottom empty, a limp nullity. While the female body is full of internal potentiality, the male is internally barren.... Manhood at the most basic level can be validated and expressed only in action.
    George Gilder (b. 1939)

    In Europe life is histrionic and dramatized, and ... in America, except when it is trying to be European, it is direct and sincere.
    William Dean Howells (1837–1920)

    And what is the potential man, after all? Is he not the sum of all that is human? Divine, in other words?
    Henry Miller (1891–1980)