Direct Sum of Modules - Internal Direct Sum

Internal Direct Sum

See also: Internal direct product

Suppose M is some R-module, and Mi is a submodule of M for every i in I. If every x in M can be written in one and only one way as a sum of finitely many elements of the Mi, then we say that M is the internal direct sum of the submodules Mi (Halmos 1974, §18). In this case, M is naturally isomorphic to the (external) direct sum of the Mi as defined above (Adamson 1972, p.61).

A submodule N of M is a direct summand of M if there exists some other submodule N′ of M such that M is the internal direct sum of N and N′. In this case, N and N′ are complementary subspaces.

Read more about this topic:  Direct Sum Of Modules

Famous quotes containing the words internal, direct and/or sum:

    The internal effects of a mutable policy ... poisons the blessings of liberty itself.
    James Madison (1751–1836)

    It is possible to lead astray an entire generation, to strike it blind, to drive it insane, to direct it towards a false goal. Napoleon proved this.
    Alexander Herzen (1812–1870)

    Never is a historic deed already completed when it is done but always only when it is handed down to posterity. What we call “history” by no means represents the sum total of all significant deeds.... World history ... only comprises that tiny lighted sector which chanced to be placed in the spotlight by poetic or scholarly depictions.
    Stefan Zweig (18811942)