Internal Direct Sum
See also: Internal direct productSuppose M is some R-module, and Mi is a submodule of M for every i in I. If every x in M can be written in one and only one way as a sum of finitely many elements of the Mi, then we say that M is the internal direct sum of the submodules Mi (Halmos 1974, §18). In this case, M is naturally isomorphic to the (external) direct sum of the Mi as defined above (Adamson 1972, p.61).
A submodule N of M is a direct summand of M if there exists some other submodule N′ of M such that M is the internal direct sum of N and N′. In this case, N and N′ are complementary subspaces.
Read more about this topic: Direct Sum Of Modules
Famous quotes containing the words internal, direct and/or sum:
“I believe that there was a great age, a great epoch when man did not make war: previous to 2000 B.C. Then the self had not really become aware of itself, it had not separated itself off, the spirit was not yet born, so there was no internal conflict, and hence no permanent external conflict.”
—D.H. (David Herbert)
“Irony, forsooth! Guard yourself, Engineer, from the sort of irony that thrives up here; guard yourself altogether from taking on their mental attitude! Where irony is not a direct and classic device of oratory, not for a moment equivocal to a healthy mind, it makes for depravity, it becomes a drawback to civilization, an unclean traffic with the forces of reaction, vice and materialism.”
—Thomas Mann (18751955)
“What God abandoned, these defended,
And saved the sum of things for pay.”
—A.E. (Alfred Edward)