Diphosphines - Chain Length and Coordinating Properties

Chain Length and Coordinating Properties

The short-chain diphosphine dppm tends to promote metal-metal interactions as illustrated by A-frame complexes. When the two phosphine substituents are linked by two to four carbon centres, the resulting ligands often chelate rings with a single metal. The most common diphosphine ligand is 1,2-Bis(diphenylphosphino)ethane, which forms a five-membered chelate ring with most metals.

Some diphosphines, such as the extraordinary case of tBu2P(CH2)10PtBu2, give macrocyclic complexes with as many as 72 atoms in a ring.

To position phosphine donor groups trans on a coordination sphere, several atoms are required to link the donor centres and long-chain diphosphines are typically floppy and do not chelate well. This challenge has been resolved by the long but rigid diphosphine SPANphos.

Read more about this topic:  Diphosphines

Famous quotes containing the words chain, length and/or properties:

    How have I been able to live so long outside Nature without identifying myself with it? Everything lives, moves, everything corresponds; the magnetic rays, emanating either from myself or from others, cross the limitless chain of created things unimpeded; it is a transparent network that covers the world, and its slender threads communicate themselves by degrees to the planets and stars. Captive now upon earth, I commune with the chorus of the stars who share in my joys and sorrows.
    Gérard De Nerval (1808–1855)

    You will, I am sure, agree with me that ... if page 534 only finds us in the second chapter, the length of the first one must have been really intolerable.
    Sir Arthur Conan Doyle (1859–1930)

    The reason why men enter into society, is the preservation of their property; and the end why they choose and authorize a legislative, is, that there may be laws made, and rules set, as guards and fences to the properties of all the members of the society: to limit the power, and moderate the dominion, of every part and member of the society.
    John Locke (1632–1704)