Dimension (vector Space) - Facts

Facts

If W is a linear subspace of V, then dim(W) ≤ dim(V).

To show that two finite-dimensional vector spaces are equal, one often uses the following criterion: if V is a finite-dimensional vector space and W is a linear subspace of V with dim(W) = dim(V), then W = V.

Rn has the standard basis {e1, ..., en}, where ei is the i-th column of the corresponding identity matrix. Therefore Rn has dimension n.

Any two vector spaces over F having the same dimension are isomorphic. Any bijective map between their bases can be uniquely extended to a bijective linear map between the vector spaces. If B is some set, a vector space with dimension |B| over F can be constructed as follows: take the set F(B) of all functions f : BF such that f(b) = 0 for all but finitely many b in B. These functions can be added and multiplied with elements of F, and we obtain the desired F-vector space.

An important result about dimensions is given by the rank–nullity theorem for linear maps.

If F/K is a field extension, then F is in particular a vector space over K. Furthermore, every F-vector space V is also a K-vector space. The dimensions are related by the formula

dimK(V) = dimK(F) dimF(V).

In particular, every complex vector space of dimension n is a real vector space of dimension 2n.

Some simple formulae relate the dimension of a vector space with the cardinality of the base field and the cardinality of the space itself. If V is a vector space over a field F then, denoting the dimension of V by dimV, we have:

If dim V is finite, then |V| = |F|dimV.
If dim V is infinite, then |V| = max(|F|, dimV).

Read more about this topic:  Dimension (vector Space)

Famous quotes containing the word facts:

    News reports don’t change the world. Only facts change it, and those have already happened when we get the news.
    Friedrich Dürrenmatt (1921–1990)

    Each truth that a writer acquires is a lantern, which he turns full on what facts and thoughts lay already in his mind, and behold, all the mats and rubbish which had littered his garret become precious. Every trivial fact in his private biography becomes an illustration of this new principle, revisits the day, and delights all men by its piquancy and new charm.
    Ralph Waldo Emerson (1803–1882)

    The effectiveness of our memory banks is determined not by the total number of facts we take in, but the number we wish to reject.
    Jon Wynne-Tyson (b. 1924)