Small Dihedral Groups
For n = 1 we have Dih1. This notation is rarely used except in the framework of the series, because it is equal to Z2. For n = 2 we have Dih2, the Klein four-group. Both are exceptional within the series:
- They are abelian; for all other values of n the group Dihn is not abelian.
- They are not subgroups of the symmetric group Sn, corresponding to the fact that 2n > n ! for these n.
The cycle graphs of dihedral groups consist of an n-element cycle and n 2-element cycles. The dark vertex in the cycle graphs below of various dihedral groups stand for the identity element, and the other vertices are the other elements of the group. A cycle consists of successive powers of either of the elements connected to the identity element.
|
Read more about this topic: Dihedral Group
Famous quotes containing the words small and/or groups:
“One need not be a great beau, a seductive catch, to do it effectively. Any man is better than none. To shrink from giving so much happiness at such small expense, to evade the business on the ground that it has hazardsthis is the act of a puling and tacky fellow.”
—H.L. (Henry Lewis)
“Women over fifty already form one of the largest groups in the population structure of the western world. As long as they like themselves, they will not be an oppressed minority. In order to like themselves they must reject trivialization by others of who and what they are. A grown woman should not have to masquerade as a girl in order to remain in the land of the living.”
—Germaine Greer (b. 1939)