Dihedral Group - Small Dihedral Groups

Small Dihedral Groups

For n = 1 we have Dih1. This notation is rarely used except in the framework of the series, because it is equal to Z2. For n = 2 we have Dih2, the Klein four-group. Both are exceptional within the series:

  • They are abelian; for all other values of n the group Dihn is not abelian.
  • They are not subgroups of the symmetric group Sn, corresponding to the fact that 2n > n ! for these n.

The cycle graphs of dihedral groups consist of an n-element cycle and n 2-element cycles. The dark vertex in the cycle graphs below of various dihedral groups stand for the identity element, and the other vertices are the other elements of the group. A cycle consists of successive powers of either of the elements connected to the identity element.

Dih1 Dih2 Dih3 Dih4 Dih5 Dih6 Dih7

Read more about this topic:  Dihedral Group

Famous quotes containing the words small and/or groups:

    Beauty depends on size as well as symmetry. No very small animal can be beautiful, for looking at it takes so small a portion of time that the impression of it will be confused. Nor can any very large one, for a whole view of it cannot be had at once, and so there will be no unity and completeness.
    Aristotle (384 B.C.–322 B.C.)

    Writers and politicians are natural rivals. Both groups try to make the world in their own images; they fight for the same territory.
    Salman Rushdie (b. 1947)