Diffraction Topography - History

History

After the discovery of x-rays by Wilhelm Röntgen in 1895, and of the principles of X-ray diffraction by Laue and the Bragg family, it still took several decades for the benefits of diffraction imaging to be fully recognized, and the first useful experimental techniques to be developed. First systematic reports on laboratory topography techniques date from the early 1940s. In the 1950s and 1960s, topographic investigations played a role in detecting the nature of defects and improving crystal growth methods for Germanium and (later) Silicon as materials for semiconductor microelectronics.

For a more detailed account of the historical development of topography, see J.F. Kelly - "A brief history of X-ray diffraction topography".

From about the 1970s on, topography profited from the advent of synchrotron x-ray sources which provided considerably more intense x-ray beams, allowing to achieve shorter exposure times, better contrast, higher spatial resolution, and to investigate smaller samples or rapidly changing phenomena.

Initial applications of topography were mainly in the field of metallurgy, controlling the growth of better crystals of various metals. Topography was later extended to semiconductors, and generally to materials for microelectronics. A related field are investigations of materials and devices for X-ray optics, such as monochromator crystals made of Silicon, Germanium or Diamond, which need to be checked for defects prior to being used. Extensions of topography to organic crystals are somewhat more recent. Topography is applied today not only to volume crystals of any kind, including semiconductor wafers, but also to thin layers, entire electronic devices, as well as to organic materials such as protein crystals and others.

Read more about this topic:  Diffraction Topography

Famous quotes containing the word history:

    America is the only nation in history which miraculously has gone directly from barbarism to degeneration without the usual interval of civilization.
    Georges Clemenceau (1841–1929)

    When the coherence of the parts of a stone, or even that composition of parts which renders it extended; when these familiar objects, I say, are so inexplicable, and contain circumstances so repugnant and contradictory; with what assurance can we decide concerning the origin of worlds, or trace their history from eternity to eternity?
    David Hume (1711–1776)

    The true theater of history is therefore the temperate zone.
    Georg Wilhelm Friedrich Hegel (1770–1831)