Differential Geometry of Curves - Length and Natural Parametrization

Length and Natural Parametrization

See also: Lengths of Curves

The length l of a curve γ : → Rn of class C1 can be defined as

The length of a curve is invariant under reparametrization and therefore a differential geometric property of the curve.

For each regular Cr-curve (r at least 1) γ: → Rn we can define a function

Writing

where t(s) is the inverse of s(t), we get a reparametrization of γ which is called natural, arc-length or unit speed parametrization. The parameter s(t) is called the natural parameter of γ.

We prefer this parametrization because the natural parameter s(t) traverses the image of γ at unit speed so that

In practice it is often very difficult to calculate the natural parametrization of a curve, but it is useful for theoretical arguments.

For a given parametrized curve γ(t) the natural parametrization is unique up to shift of parameter.

The quantity

is sometimes called the energy or action of the curve; this name is justified because the geodesic equations are the Euler–Lagrange equations of motion for this action.

Read more about this topic:  Differential Geometry Of Curves

Famous quotes containing the words length and/or natural:

    What journeyings on foot and on horseback through the wilderness, to preach the gospel to these minks and muskrats! who first, no doubt, listened with their red ears out of a natural hospitality and courtesy, and afterward from curiosity or even interest, till at length there “were praying Indians,” and, as the General Court wrote to Cromwell, the “work is brought to this perfection that some of the Indians themselves can pray and prophesy in a comfortable manner.”
    Henry David Thoreau (1817–1862)

    I am against nature. I don’t dig nature at all. I think nature is very unnatural. I think the truly natural things are dreams, which nature can’t touch with decay.
    Bob Dylan [Robert Allen Zimmerman] (b. 1941)