Differential Field
A differential field is a field K, together with a derivation. The theory of differential fields, DF, is given by the usual field axioms along with two extra axioms involving the derivation. As above, the derivation must obey the product rule, or Leibniz rule over the elements of the field, to be worthy of being called a derivation. That is, for any two elements u, v of the field, one has
since multiplication on the field is commutative. The derivation must also be distributive over addition in the field:
If K is a differential field then the field of constants
Read more about this topic: Differential Algebra
Famous quotes containing the words differential and/or field:
“But how is one to make a scientist understand that there is something unalterably deranged about differential calculus, quantum theory, or the obscene and so inanely liturgical ordeals of the precession of the equinoxes.”
—Antonin Artaud (18961948)
“Yet, hermit and stoic as he was, he was really fond of sympathy, and threw himself heartily and childlike into the company of young people whom he loved, and whom he delighted to entertain, as he only could, with the varied and endless anecdotes of his experiences by field and river: and he was always ready to lead a huckleberry-party or a search for chestnuts and grapes.”
—Ralph Waldo Emerson (18031882)