Diagonalizable Matrix - An Application

An Application

Diagonalization can be used to compute the powers of a matrix A efficiently, provided the matrix is diagonalizable. Suppose we have found that

is a diagonal matrix. Then, as the matrix product is associative,

\begin{align} A^k &= (PDP^{-1})^k = (PDP^{-1}) \cdot (PDP^{-1}) \cdots (PDP^{-1}) \\
&= PD(P^{-1}P) D (P^{-1}P) \cdots (P^{-1}P) D P^{-1} \\
&= PD^kP^{-1} \end{align}

and the latter is easy to calculate since it only involves the powers of a diagonal matrix. This approach can be generalized to matrix exponential and other matrix functions since they can be defined as power series.

This is particularly useful in finding closed form expressions for terms of linear recursive sequences, such as the Fibonacci numbers.

Read more about this topic:  Diagonalizable Matrix

Famous quotes containing the word application:

    The application requisite to the duties of the office I hold [governor of Virginia] is so excessive, and the execution of them after all so imperfect, that I have determined to retire from it at the close of the present campaign.
    Thomas Jefferson (1743–1826)

    It would be disingenuous, however, not to point out that some things are considered as morally certain, that is, as having sufficient certainty for application to ordinary life, even though they may be uncertain in relation to the absolute power of God.
    René Descartes (1596–1650)