Dependency Relation

In mathematics and computer science, a dependency relation is a binary relation that is finite, symmetric, and reflexive; i.e. a finite tolerance relation. That is, it is a finite set of ordered pairs, such that

  • If then (symmetric)
  • If is an element of the set on which the relation is defined, then (reflexive)

In general, dependency relations are not transitive; thus, they generalize the notion of an equivalence relation by discarding transitivity.

Let denote the alphabet of all the letters of . Then the independency induced by is the binary relation

That is, the independency is the set of all ordered pairs that are not in . Clearly, the independency is symmetric and irreflexive.

The pairs and, or the triple (with induced by ) are sometimes called the concurrent alphabet or the reliance alphabet.

The pairs of letters in an independency relation induce an equivalence relation on the free monoid of all possible strings of finite length. The elements of the equivalence classes induced by the independency are called traces, and are studied in trace theory.

Read more about Dependency Relation:  Examples

Famous quotes containing the words dependency and/or relation:

    The history of work has been, in part, the history of the worker’s body. Production depended on what the body could accomplish with strength and skill. Techniques that improve output have been driven by a general desire to decrease the pain of labor as well as by employers’ intentions to escape dependency upon that knowledge which only the sentient laboring body could provide.
    Shoshana Zuboff (b. 1951)

    When needs and means become abstract in quality, abstraction is also a character of the reciprocal relation of individuals to one another. This abstract character, universality, is the character of being recognized and is the moment which makes concrete, i.e. social, the isolated and abstract needs and their ways and means of satisfaction.
    Georg Wilhelm Friedrich Hegel (1770–1831)