In probability theory, a constant random variable is a discrete random variable that takes a constant value, regardless of any event that occurs. This is technically different from an almost surely constant random variable, which may take other values, but only on events with probability zero. Constant and almost surely constant random variables provide a way to deal with constant values in a probabilistic framework.
Let X: Ω → R be a random variable defined on a probability space (Ω, P). Then X is an almost surely constant random variable if there exists such that
and is furthermore a constant random variable if
Note that a constant random variable is almost surely constant, but not necessarily vice versa, since if X is almost surely constant then there may exist γ ∈ Ω such that X(γ) ≠ c (but then necessarily Pr({γ}) = 0, in fact Pr(X ≠ c) = 0).
For practical purposes, the distinction between X being constant or almost surely constant is unimportant, since the probability mass function f(x) and cumulative distribution function F(x) of X do not depend on whether X is constant or 'merely' almost surely constant. In either case,
and
The function F(x) is a step function; in particular it is a translation of the Heaviside step function.
Read more about this topic: Degenerate Distribution
Famous quotes containing the words constant, random and/or variable:
“With wavering steps does fickle fortune stray,
Nowhere she finds a firm and fixed abode;
But now all smiles, and now again all frowns,
Shes constant only in inconstancy.”
—Ovid (Publius Ovidius Naso)
“Man always made, and still makes, grotesque blunders in selecting and measuring forces, taken at random from the heap, but he never made a mistake in the value he set on the whole, which he symbolized as unity and worshipped as God. To this day, his attitude towards it has never changed, though science can no longer give to force a name.”
—Henry Brooks Adams (18381918)
“There is not so variable a thing in nature as a ladys head-dress.”
—Joseph Addison (16721719)