Deformation Theory

In mathematics, deformation theory is the study of infinitesimal conditions associated with varying a solution P of a problem to slightly different solutions Pε, where ε is a small number, or vector of small quantities. The infinitesimal conditions are therefore the result of applying the approach of differential calculus to solving a problem with constraints. One can think of a structure that is not completely rigid, and that deforms slightly to accommodate forces applied from outside; this explains the name.

Some characteristic phenomena are: the derivation of first-order equations by treating the ε quantities as having negligible squares; the possibility of isolated solutions, in that varying a solution may not be possible, or does not bring anything new; and the question of whether the infinitesimal constraints actually 'integrate', so that their solution does provide small variations. In some form these considerations have a history of centuries in mathematics, but also in physics and engineering. For example, in the geometry of numbers a class of results called isolation theorems was recognised, with the topological interpretation of an open orbit (of a group action) around a given solution. Perturbation theory also looks at deformations, in general of operators.

Read more about Deformation Theory:  Deformations of Complex Manifolds, Relationship To String Theory

Famous quotes containing the word theory:

    By the “mud-sill” theory it is assumed that labor and education are incompatible; and any practical combination of them impossible. According to that theory, a blind horse upon a tread-mill, is a perfect illustration of what a laborer should be—all the better for being blind, that he could not tread out of place, or kick understandingly.... Free labor insists on universal education.
    Abraham Lincoln (1809–1865)