Darboux's Theorem - Statement and First Consequences

Statement and First Consequences

The precise statement is as follows. Suppose that θ is a differential 1-form on an n dimensional manifold, such that dθ has constant rank p. If

θ ∧ (dθ)p = 0 everywhere,

then there is a local system of coordinates x1,...,xn-p, y1, ..., yp in which

θ = x1 dy1 + ... + xp dyp.

If, on the other hand,

θ ∧ (dθ)p ≠ 0 everywhere,

then there is a local system of coordinates x1,...,xn-p, y1, ..., yp in which

θ = x1 dy1 + ... + xp dyp + dxp+1.

In particular, suppose that ω is a symplectic 2-form on an n=2m dimensional manifold M. In a neighborhood of each point p of M, by the Poincaré lemma, there is a 1-form θ with dθ=ω. Moreover, θ satisfies the first set of hypotheses in Darboux's theorem, and so locally there is a coordinate chart U near p in which

θ = x1 dy1 + ... + xm dym.

Taking an exterior derivative now shows

ω = dθ = dx1 ∧ dy1 + ... + dxm ∧ dym.

The chart U is said to be a Darboux chart around p. The manifold M can be covered by such charts.

To state this differently, identify R2m with Cm by letting zj = xj + i yj. If φ : UCn is a Darboux chart, then ω is the pullback of the standard symplectic form ω0 on Cn:

Read more about this topic:  Darboux's Theorem

Famous quotes containing the words statement and/or consequences:

    Most personal correspondence of today consists of letters the first half of which are given over to an indexed statement of why the writer hasn’t written before, followed by one paragraph of small talk, with the remainder devoted to reasons why it is imperative that the letter be brought to a close.
    Robert Benchley (1889–1945)

    There are more consequences to a shipwreck than the underwriters notice.
    Henry David Thoreau (1817–1862)